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a;;. STATE ESTIMATION AND CONTROL OF CONDITIONALLY LINEAR SYSTEMS*

‘ WOJCIECH J. KOLODZIEJ! AND RONALD R. MHLER!:?2

~ Abstract. The filtering problem for a partially observable stochastic system,
41‘ with linear in observable states dynamics and non-Gaussian initial conditions
1:1. is studied here. It is shown that the conditional expected value of the

5;5 unobservable states, given the past observations, can be expressed in terms of
itﬁ a finite dimensional set of statistics. This result, which generalizes the
‘;:_ conditionally Gaussian filter is used to derive a separation principle for a
SE;E linear-quadratic control problem. .

- '

e Key Words. Optimal filtering, stochastic comtrol, non-Gaussian stochastic
i;&i systems.
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- Introduction
y Stochastic, partially observable systems, with linear-in-observable state )

dynamics are termed conditionally linear systems here., It is well known that

: the solution of a state estimation problem for a conditionally linear system g
™ with Gaussian distribution of the initial state is given in terms of two sets i
E: of sufficient statistics, satisfying stochastic differential equations [4].

Solved here is the state estimation problem which generalizes the above

X result for the case of an arbitrary a priori distribution. The method applied ’
fs in this study is based on the derivation of an explicit formula for the condi- i
;3 tional characteristic function of the state, given the past and present ?
‘; observations. This approach seems to impose less restrictive conditions on i
,S the system structure than the methods based on the derivation of the :
§ conditional distribution function. The latter can be found in [1] where the :
\‘ filter is derived for a linear system with a priori distribution having a i
- well-defined density function.

:: It is shown here that the conditional characteristic function of the

. present and past states, given the present and past observations, is para- i
: metrically determined by a finite number of sufficient statistics. This i
S result leads to the derivation of a filter, in the form of a finite set of i
- stochastic differential equations which extends the result of [1] in a similar !
g manner as a conditionally Gaussian filter generalizes a Kalman filter.

é Also discussed here and illustrated by the examples, is the suitability

i of the filter structure for the study of stochastic control and parameter ‘
- estimation. X

LI
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- 1. Problem Formulat{on and the Main Result

-
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= Given the following system of stochastic differential equations
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o (1.1) dx, = (f(t,y) + £,(t,y)x ) dt + gy (t,y)dw  + q,(t,y)dv,,

i

._'f- (1.2) dyt = (ho(t,y) + hl(t,y)xt)dt + dvc’ 0 <t <T,

Tt

;?; where fo,fl,go,qo,ho,hl are the nonanticipative functionals of y (1.e., Yt
Oy

. measurable with Y, = o - alg {ys, 0 <s <t}), and w., Vv, are independent
if* Wiener processes.

!:':l -~
;Q: The objective is to find x, = E(xt/Yt) , assuming that x,, y, satisfy

N
>
N (1.1) and (1.2), and that the conditional distribution of the initial states
i:: F(a) = P(x, < alyo) is given.

)
.\-

:f The organization of this section starts with Lemma 1, whereby it is shown
4
1# that the conditional characteristic function of (X.q, Xpys oo, xtn)|Yt, for
N
:}: an arbitrary decomposition 0 < ) < t € eae £ t, <t <« T, of the interval
,::: {0,T] is of a particular form. Results from the theory of conditionally
LR
( Gaussian processes are used here.

.ij: Next, Lemma 2, the explicit formula for the characteristic function of
4 *i

B

.}f: X, Y, is derived, and finally, in Lemma 3, all the results are organized to

e

: yield the recursive, finite-dimensional set of filter equationms.

:: The assumptions used in the proof of Lemma 1 and 2 are listed below:
;3 Let CT denote the space of continuous functions n = {nt, 0 <t <T}. It
.i; is assumed that for each n € C,

ﬁ:\
v
o,
e T 2 2
N (1.3) of (kZO (£ (e, [+]0, (£, m) D+|gg (e ) [“+[qy (e, m) %) dE < =
}ij The above assumption assures the existence of the (Ito) integrals in
L0
o (1.1) and (1.2) [3]. 1In order to use the results for conditionally Gaussian
P
@ processes it 1s also assumed that [4]:
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(1.4) for all n € Ct’ t ¢ {0,T], 'fl(t,n)|+| hl(t,n)I < const,
and k
.
T 4 4 4 4 ]
(1.5) Of E(Ifo(t,y)l +|g0(t,y)| +|q0(t,y)| Jdt < w, E(|x0| )< = i
|
4
Lemma 1. k
- 4
Let ]
4
3!
n . a
o = exp(1 kgo zkxtk)’ z = . eR, 0 <ty <t <.u<t <t QT
z
n
Then the conditional characteristic function of (x.g, Xp 15 ++-, xtn)IYt is
given by ;
[ ]
(1.6) e (z) = E(¢t,Yt) = [ exp (Q(t,a,z,y)) dF(a)
—-an

where Q(t,a,z,y) is quadratic in the variables a and z.

Proof of Lemma 1

First notice that (l1.1) solves as
t t t
(1.7) x, =& (x) + Of 9 (f0~q0h0)ds + of 0" qydy, + of o, gydw_)
t
where ¢, = exp (Of (£, - gohy)ds).

Rewrite (1.7) in the symbolic way as

(1.8) x, = wt(xo,w,y).
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' Now, the following version of the Bayes formula will be used [2, p. 8]:
Let ¢t(x0,w.}') be a nonanticipative functional of {its arguments with
.. H|¢t|) < » for all t ¢ [0,T). Then
S
&
: [
(1.9 E(¢t|YC) = f f ¢t(a,n,}’)0t(a,m}’)du (n)dF(a)
- C w
. T
:: where Uy, is a Wiener measure in the measurable space of continuous functions n
' on [0,T],
> £ . 1 F o2 - 2
: o (a,n,y) = exp(of b (@@, y) = x (9))dv, - 5 of (v (a,n,y) - x_(v))7ds)
o
% (1.10)
y .
N with dv, = dy - (hg + hy xs)ds, and ws(a,n,y) defined by (1.8). The random
.‘ process v, can be represented by
:. t A t ~
v, = 0] (dys = (hy(s,y) + h, (s,y)x_(y) Jas) = v, + of h (s,y) (xs-xs(y) Jds .
‘\: Now using the Ito formula we have

- izvt izvs t 1z\aT -

2 e - e +1z | h, (1,y)e [x_t - x (y) Jdt

. s

. t dzv 2 b izv.

- +1z [ e dv_r -3 [ e dt .
s s
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Multiplying both sides of the above equation by e $ and taking the condi-
tional expectation B(-[Y.) gives
tz(v -v_) 2t tz(v_-v_)
t s z T 8
E(e '!s) =1 - 3 sf E(e le) dt .

Solving the last equation yields

2
z
1z(vt-vs) - 5(t-s)

(1.11) E(e [t.) = e .

which shows that (v,,Y,.) i{s a Wiener process.

Now rewrite pt(a,n,y) in a more convenient form. To this ena introduce the

following notation:

t t
-1 -1 ~
A (e,y) = h1(¢£[of o [fo~q0ho)ds + 0[ 8 qodys) - xt) s

17t

-1
A3(t,y) =0, g9 »

t L L
of A (s,y)dv_ ~ E-of Al(s,y)ds ,

cl(t,y)

t t
C,(t,y) o! Ay(s,y)dv_ - of A, (s,y)A,(s,y)ds ,

»

t
Cy(t,y) = ( f Ag(s,y)ds)l/2
0

t

s t
C,(t,y,w) = 0[ Az(s,y)of Aqy(T,y)dw dv_ -Of

s
Al(s,y)Az(s,y)of A3(r,y)dwrds .
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Cs(t$y’w) = - I AZ(S,Y) f A3(S,Y)dwrds .
0 0
Note also that C4(t,y,w) and Cs(t,y,w) can be rewritten with the use of the
Ito formula by:

t
C,(t,y,w) = Of A, (t,s,y)dw_

t
Cs(t,y,w) = Of A (t,s,y)dv_ ,

where
t s
Aa(t,s,y) = (of Az(s,y)dvs - OI Az(r,y)dvt]
t s
- (Of A, (s,7)A,(s,y)ds - OI Al(r,y)Az(r,y)dr))A3(s,y)
s 2 € 2
As(t,s,y) = ([ A(r,ydr - OI A5(s,y)ds A (s,y) .
0

Now, using the above notation we have from (1.8) and (1.10)

t S

2
1 2 2
pe(aw,y) = exp(C+ a(Ct C5) + C\- & Co- 2 Of Az(of Ay )%ds)

= exp(C,+ aC St ft(aA + A, )dw - & jt W20 [ aav )
expil T kT s 0 5T A4/ 7 o) 2% fa%e s) -

(1.12)

The arguments in (1.12) were omitted for brevity.

From (1.8) it follows that

R T AP I A S S,
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t
x, = ;pt(xo,w,y] = ¢t(x0+ Ay (t,y) + Of A3(S,v)dws)

where

t t
-1 -1
Aﬁ(t,y) = of o [fo- qoho)ds + 0[ o, qydy, -

Combining (1.12) and the above

exp(Q(t,a,z,y)) = [ 9. (a,n,¥)p (a,n,y)du (n)

CT
322 n
= exp(C,+ aCy= 5— Cy+ a(kzI LR LN
n t
+ 1 oAt 1z) [ exp( [ (aAg+ A, Jdn,
k=1 CT 0
n t 1 t2 S 2
+ kzl iz 9., of k Aydn_ -~ > f Az[of A3dnT) ds)duw(n).

(1.13)

»
2

l"-'
2,

In order to evaluate the integral in (1.13) the following results will be

4 ifl‘.l
A,

used:

Pols
s

13
w'

(1) Since the above integral represents a conditional expected value of
its integrand, under the condition that y,, s e [0,t] and x4 = a are
given, the resulting distributions are of conditionally Gaussian
type [4]. Note that this fact does not depend on the F(a).

(11) Wwith all the variables in (1.13) being conditionally Gaussian we can

use a convenient theorem:
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Theorem [4, pp. 12-13]
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Let w,, t € [0,T] be a Wiener process and let R(t), G(t), and H(t) > 0O be

; such that

T
[ R + 6(e)% + B(e))de < = .
0

N Then for all t ¢ [0,T]
t t s 2
(1.14) E(exp( [ R(s)G(s)dw_ - [ us)( [ G(r)dwr) ds )
o 0 0
” t
= exp(3 D(t) + 3 [ G()?N(s)ds)
0

where dr(s) = (2H(s) - F(s)ZG(s)z)ds , I'(t) =0,
. t
.. and D(t) is the covariance of | R(s)dE_, where

0

dg_ = G(s)zr(s)Est + G(s)dw_ , £, = 0 .

Comparing the last integral in (1.13) with the equation given by (l.14),
we note that the corresponding R(t) is a linear function of a and z. Now
- (1.9), (1.13), (1.14), and the definition of D(t) conclude the proof of

Lemma 1.

From Lemma 1 it follows in particular that for z £ R, the characteristic

5' function of X. (Y, is given by
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(1.15) et(z) = C(t,y) [ exp(azFl(t,y) + an(t,y) + izaF3(t,v) + izFa(t,v)

+ zzFS(t,y))dF(a) ,

where F,, F,, F3, F,, Fg do not depend on F(a). Normalizing et(z) (i.e.,

requiring that et(O) = 1) vields

/ exp(a2F1+a(F2+izF3)dF(a)
2

FS) —

2
| exp(a F1+aF2)dF(a)

(1.16) et(z) = exp[izFa + z

Then from the general properties of the characteristic function, it fo

that
1 det(z) -
i dz z=0 t*
2
1)2 d et(z) oo . ;2
i 2 z=0 t t’
dz

where 2, = E((xt - xt)2|Yt) 1.e., the conditional variance of x,|Y..

From the above and (1.16)

(1.17) xt = F3It(1) + Fl; Iy
(1.18) P = =2F_ + Fz (I (2) - 12(1))

* t 5 3 t t ’
where

@«
[ anexp(azF1+aF2)dF(a)

(1.19) It(n) = = ,n=1,2.

[ exp(a’F + aF,)dF(a)

The following Lemma defines F; i = 1,2,3,4,5 in (1.16).

ws
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p;}j Lemma 2
u The characteristic function of xtIYt is given by

s ‘..:f. o 2

e / exp(a F1+aF2+izxt(a,0))dF(a)

X 1 2= -

: (1.20) e (z) = exp (- 5z Pt(O)) = > ,
| exp(a F1+aF2)dF(a)
-

where it(a,O), Pt(O) are given as the solutions to the following set of dif-

ferential equations with g = O:
(1.21) dx (a,0) = (f0+flxt(a,c)]dt + {qp* Pt(c)hlj(dyt-(h0+ hx (a,0) Jdt)

§0(a,c) =a ,

= = 2, 2 = 2 = 2

(1.22) dP (o) = (ZflPt(c) + gyt qo—(q0+ Pt(o)hl) Jde Pola) = o,
and

1 F 202
(1.23) F=-5 e, ds

0

t

(1.24) F, = of ohy (dv_+ h 91 (1)ds) ,
t -—
(1.25) b, = exp(oj (fl- hl(q0+ P (0)h ))ds) .
L] Proof of Lemma 2

4

2
X

7

Since the F; do not depend on F(a) (see Lemma 1) take

LA AT A
R

(a-m)?
exp (- 5 Jda , a, o> 0 .

Y2ng 2a

-t

(1.26) dF(a) =

!
-
)

.
L
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r
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In this case the resulting conditionally Gaussian distribution allows for

{uE explicit et(z) calculation [4]. Accordingly,
o (1.27) e (z) = exp(izX, (m,0) - + 2°B (o))
s ’ t plizx, tm, 2 % 5t ’

where it(m,c) and P (o) satisfy (1.21) and (1.22) respectively. With F(a)

o given by (1.26) it follows from (l1.16) that

(1.28) ec(z) = exp[iz(F4+ ;2[F + = )F

where 0-2 = 0-2 - 2F1.

Comparing (1.27) and (1.28), we have

Pl

el

¥

9
s
'

- ~2 m
(1.29)  x.(m,0) = F,+ o°(F, +?)F3 ,
A and

5 (1.30) P () = ok - oF, .

3 5

Letting now 0 + 0 in (1.29) and (1.30), it follows that

fgj (1.31) F, + oF, = xt(m,O) ,

and

. Pl Padl®
n‘l. LRSI
l‘1.‘r.‘- LR Y K

PO A

(1.32) F --%5(0) .

NG
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The above allows e .(z) to be of the form of (1.20) with F;, and F, yet to be

defined. Using now (1.17) and (1.18) and explicitly calculating I.(n),

n=1,2,

(1.33) At(o_z - 2F) = F§

and

(1.34) Atﬁii + Fy) = Fy(x, - F,)
with s, =P, = P0) .

The formulae for F and F, will be obtained by differentiating (1.33) and
(1.34). However, before this is done recall from the theory of nonlinear
filtering [3] that in general for x,, y, given as a solution to (1.1) and

(1.2) X, Py satisfy

(1.35) dx_ = (£, + £,x_)dt + (q5 + P,h Jdv, , x, = _af adF(a) ,
dp_ = (2£. P +g> +q> -(q, + P.h )2 )at + h R dv_, P = fw(a-Q )2dF(a)
t 't 0" % "9 tl 't >0 __ 0 ?

(1.36)

* 43
where R, = E((x, - x.) |Yt) .

. L. e e e e e - . L. L. e . Lo " . e -
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2,

Remark. Direct application of Eqs. (1.35) and (1.36) meets the difficulty of

infinite coupling between the subsequent moments.
From Eqs. (1.22), (1.35), and (1.36), and the fact that for conditionally

Gaussian processes R, = 0,

s 2
(1.37) da, = & (2f, - h (29, + b (P, + P (0))))dt , &y =0

Now from (1.33) and (1.34) (upon differentiation) and using (1.35), (1.37) it

follows that

__1.2 2 -
(1.38) dF) = -5 hy Fy dt , F,(0) =0,
and
(1.39) dF, = Fyh (dv, + b FiI (1)dt) , F (0) =0 .

To define F4, notice that Eq. (1.21) solves as

- t-l - t_l -

x,(a,0) = ¢ (a + of bg (£q = hglag + Bg(odh, ))ds + of bg (ag* BPg(odh )ay ) ,
(1.40)
where

t -
(1.41) ¢, = exp( [ (£,-h (ay* P _(o)h,])ds
0

Comparing the above with (1.31) shows that Fy = ¢, for ¢ = 0, which ends the

proof of Lemma 2.
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Lemma 3 below merely organizes all the results into the filter equations

and the final form of the conditional characteristic function.

Given the system (1.1) and (1.2) together with the a priori distribution
F(a) = P(xq < alyo). The following are the filter equations (i.e., formulae

of the recursive type, which calculate x, = E(xt|Yt)).

(1.42) dx, = (£,+ £,x, )dt + (gt P.h Jdv, , x, = -,f adf(a) ,
(1.43) dv, = dy, - (hy + b x )dt ,
(1.44) P =P + ¢2(1 (2) - 12(1))
* t t t\t t i
(1.45)  dB, = (26,5 + g2 + q> - (a, + B.h, )2 )dt , B = O
. t 1'e " 87 9% 7 W T Py * Yo ’
/ anexp(azF1+ aF , JdF(a)
(1.46)  T.(n) = = ,n=1,2,
/ exp(a2F1+ aF, )dF(a)
1.22
(1.47) dF, = - > hi¢ dt , F,(0) =0,
(1.48) dF, = ¢, b, (dv, + ¢ h I (1)dt) , F,(0) = O,
(1.69) g, = (£ = hy(qq + B0y ))e, dt , ¢, = 1 .

The characteristic function of xtltt is given by:

R PN S AP S SR W S
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/ exp(a2F1+a(F2+iz¢t))dF(a)

" 1 2=
e (z) = exp(iz(xt - ¢tIt(1)) -3z Pt)

2
[ exp(a F1+aF2)dF(a)

(1.50)

2. Control and Special Cases

Two special cases of Eqs. (l.1) and (1.2) result in significant simplifi~
cation of the filter equations. The first case occurs when go(t,y) =0,

0 <t <T. From (1.7) it follows then that x, is of the form

t

x, = At(y)xO + Bt(y) .

Using the above equation in (1.2) we have the following estimation problem:

Let xy be a random variable with distribution F(a) = P(xy < alyo). Assume

that the observation process Yo 0 <t <T, admits a differential
dy, = [ho(t,y) + hl(t,y)xo)dt +dv, ,

where the notation stays the same as in (1.2) and hy, hy satisfy (1.3) and
(1.4).
From Lemma 2 it follows now that the conditional characteristic function of Xq

given Y, is of the form

/ exp(azF1 + aF, + 1za)dF(a)

(2.1) e (z) = -=

f exp(azl?1 + aF, )dF(a)

The above results from the fact that dx; = O replaces Eq. (1.1) implying

pt(o) = 0 and it(a,O) = a, ag defined by Eqs. (1.21) and (1.22). Now

det(z) -

dz z=0 ixt ’
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where x, = E(x0|Yt), combined with the general filter equations (1.42) +

(1.50) yields

= 1.2 52 £
a exp(- = a hids+a h, (dy -h_.ds ) )dF(a)
- e 2 401 o0 17780
(2.2) X, = po S, . .
_u! exp(- 5 a Of hlds+aoj h, (dy_-hyds ) )dF(a)

In particular if dF(a) = exp(~- %-(a - mo)z)da, (2.2) results in

/2n0
2 t
A my + 9, OI hl(dys - hods)
(2.3) x =
t 2 tz
1 + g, of h,ds

The above agrees with the result presented in [4, pp. 22-24].
The second special case for which the filter takes a simple form follows
if hl(t,y) = 0 (1.e., the state is not observable directly), 0 < t < T. Now

the filter equations (1.42) + (1,50) reduce to

a
L)
]

(fg + £,x )t + q,(dy, - hydt]) ,

f adF(a) ,

(2.4) x

2
0

[= N
o
[ ]

(2£,2, + gg)ae

0 ] (a- ;0)2 dF(a) .

o
[ ]

. - & e T . e, - - A N e e '."
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~
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[};‘ In order to discuss a control problem using the results obtained here, assume
En that all the coefficients in (1.1) and (1.2), except £,(t,y) which is denoted
X here by ut(y), are functions of time only. If u,(y) satisfies the assumption
- (1.5) we say that u = {ut(y), 0 €t <T} is an admissible control and write

ue U,

Let xg, xz denote the solutions to (1.1) nad (1.42) respectively, for

some u e U, and let xg, xz correspond to u, = 0, 0 <t <T.

Au ~ -~
Define ey = xp - X ep = X - Xy = e, eg = x2 - x:. Substracting Eq.

(1.42) from (1.1) we have

u u
(2.5) de fedt + godw, + qudv, - (q

u \ u
N + Pt(e )hll(hlet + dvt) ,

0

where P, = P .(e") shows that P, depends only on e:, 0 <s <t which is seen

from Eq. (1.48) rewritten as:
(2.6) dF, = ¢ h (e h de + dve + ¢ h T (1))de .

From (2.5) it follows that with probability one the values of ey and e?

coincide for all u ¢ U. Now, since

Ny (2.7) dv, = dyy - (h+ h x)de = hiegdet + dv_=h

o o
t 0 1Xe etdt + dvt - d\)t ,

1

vg and vg coincide with probability one. From (2.7) it follows that Fg.

4

U

(1.42) can be rewritten as

Sl

L
r
.

= ;o = [ adF(a)

7/

(2.8) dx: - (flx:+ ut]dt + (q0+ hlPt(e:])dv: , xg

‘."'

v
I

- ab
~ ~

Now let ;t = Ft(xu), where Ft is a nonanticipative functional of x;,

0 <8 <t, and satisfies

.........
........
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T
(2.9) £( | ¥, *de) < = .

From (2.8) it follows that u

. s o-alg{vJ, 0 < s < t} measurable. Now, let u,

be any admissible control and let y: be an observation process assoclated with

u,. From (2.7),

Y: = o—alg{y:, 0 <s <t} o—alg{v:, 0 <s <t} = c—alg{vg, 0 <s <tl.

(2.10)

The above shows that ;t is Y: measurable. This fact combined with (2.9)
states that Gt € U, and that we can expect the separation of the stochastic
control of Gt type and the filtering problem. As an illustration of the

statement, consider the folliowing control problem,

Linear~Quadratic Control Problem with Non—-Gaussian Initial Distributions

The partially observable controlled process (x,,y.), 0 <t < T, i{s given

by the stochastic equations
(2.11) dx, = (£, (t)x_ + u Jdt + g (t)dw ,
dyt = hl(t)xtdt + dvt » Yo " 0.

The independent Wiener processes w, and v, entering into (2.11) do not depend

on the random variable Xy {the initial state). X is assumed to have distri-
o

bution function F(a) = P(xo < a) with f a“dF(a) { o (finite fourth order

moment).

e

. Cy
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-.':f'i:i The Yt = a-alg{ys, 0 < s < t} measurable, stochastic process u, is called
_ a control at time t and is assumed to satisfy
e
YO T
= B( [ [u |"dt) <=

~ 0

}

N

:\:'.'\- For u = {“t’ 0 <t <T}, satisfying the above we write u ¢ U, where U is the
..;,.\
:'-',.: class of admissible controls. It is also assumed that fl’ 20> h1 satisfy the
e deterministic version of (1.3) # (1.5).
':(:',: Consider now the performance functional

y 2 T 2 2
S (2.12) J(u) = B(xph, + 0] (x B(E) + u R(t))dt)
:I:j:::
"'/ where h.r >0, H(t) »0, 0 < R-l(t) < const., 0 <t < T. The admissible con-
_._ . trol u € U is called optimal if
o
e J(u) = inf J(u) .

- uel

Sk Lemma

":_:: The optimal control for the process (2.11) and the performance index
'::_;: (2.12) exists and is defined by

o

o (2.13)  u, = -k He)Qe)x, , 0 €t <T

o t t
oy
.J‘...‘
e where Q(t) > 0 satisfies the Riccati equation

S 2 - 2B 5e (eyaee) + B - QFORTI(E) , D = by,

‘..

. - and x, is defined by
-
i

N
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)
B 1
N B
FS (2.15)  dx, = (£,(0) = R ()Q(0) Jx dt + P (Wh ()dv, ;j
| _
t:: X, = [ adF(a) ,

dv,_ = dyt - hl(t)xtdt

L (PRI

rJ
L}

B(e) + ¢(0)2(1,(2) - 12(1))

dP(t)

Tt = 26 (OB(e) + gg(t) - hf(:)ﬁz(t> , B(0) =0

t
#(t) = exp( [ (£,(s) - hi(s)B(s))ds
0

t
1 2 2
Fl(c) = -~ E-of hl(s)¢ (s)ds

t
F,(t,v) = OI ¢(t)hl(t)(dvt + ¢(t)h (£)I (1)dt)

/ anexp(azFl(t) + an(t,v))dF(a)

poy ,n=1,2.

/ exp(aZFl(t) + aF,(t,v) )dF(a)

It(n) =

. Remark. The structure of the optimal control law is identical with the opti-

mal controller for LQG problem.

Proof of the Lemma

First note that the assumptions made in the control problem statement

assure well-defined filter for the system (2.11) and u ¢ U. Next rewrite the

performance index as follows:

. . et et Lt T o T P N RN
LIRS TP YT Y g L N N
OO SR ~
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a > U

T
(2.16) J(u) = n(z(x%thzT) + oI E(xiﬂ(t) + uiR(t)|Yt)dtJ

T

- B((x4)%h + O; ((2)*a(e) + ulR(e) at)

T
u u
+ B(h P, + O[ P H(t)dt)

From (2.6) we conclude that Pg does not depend on the control u and coincides

with the function Pg obtained from the filter equations for u, =0, 0 <t < T.

t

The process x: entering (2.15) satisfies equation (see 2.8)
“u “u 0, 0
(2.17) dx, [fl(t)xt + ut]dt +h (P dv ,
0 u t u °
where Ve =V < J (dys - hl(s)x:ds), according to (2.7), and vg is a Wiener
process (see (1.11)). Introduce now the function

2 T 2 02
(2.18) V(e,£) = £7Q(e) + [ Q(oh (0 (p)%dr
t

where 0 < t < T, =» € £ < », and Q(t) satisfies (2.14)., It is easy to verify

that V(t,g) satisfies the following Bellman equation:

2
(2.19) EZH(t) + gfl(t) ——lg—avgz ) +-§- (P:)zhf(c) 3 V(;,;) + 3V§§,E)
14

+ min(nZR(t) + n 32(3—2-’5—)) =0
n

and that V(T,g) = EZhT.

Note that n which minimizes the above for positive definite R(t), is given by

(2.20) n = - He)e)e .

[ P R ST R ey

Smas 8.8 8 A Bl AN




Calculate now, with the use of the Ito formula,

T 2
- ~ oav(t,£) 1.2 2 3°V(t,£)
V(Txp) - V(0uxg) = [ (BHEE o + g h(p0)T A e
0 £=xt 9§ £=xt
+ V(e 8) . ax®) .
Y3 u t’
E=xt

Taking into account (2.8) and (2.19) we obtain
“u - T “u,y2 2
v(tx_) - v(0,xy) > - Of ((xg)7H(E) + u R(E) )de
T “u o] o
+ 2Of x Q(t)P h) (£)dv .
After taking the expectation of both sides of the above inequality,
. ~uy2 T 2uy2 2
(2.21) v(0,x,) < E((xy) "y + o[ ((x,)7ue) + u R(E) )dt]
The equality in (2.21) holds, according to (2.20) only if
~ -1 ~a
(2.22) u, = -R “(t)q((t) X, .
Comparing (2.22) with (2.16),
J(@) < J(u) for all u e U.

The admissibility of u defined by (2.22) follows from (2.10) and the fact that

E(sup (x:)A] { =,
0<t«<T
The above can be proven in the same way as in the derivation of a conditional-

ly Gaussian filter [Lemma 12.l; 4, pp. 18-19]. This ends the proof of the

Lemma.
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It seems to be possible, (following e.g. [2]) to show that the separation

principle holds also for nonquadratic performance functionals.
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